Text to Image
Text to Image
텍스트-이미지 변환 작업은 텍스트 설명에서 시각적 표현(이미지)을 생성하는 작업입니다. 이 과정은 이미지를 설명하는 텍스트 입력으로 시작됩니다. 간단한 설명부터 복잡하고 추상적인 개념까지 다양한 내용이 포함될 수 있습니다. 모델은 텍스트를 처리하여 내용을 이해한 다음 설명과 일치하는 이미지를 생성합니다. 여기에는 텍스트의 의미를 이해하고, 설명된 요소를 시각화하여 일관된 이미지로 조립하는 작업이 포함됩니다.
Stable Diffusion
%pip install diffusers
from diffusers import DiffusionPipeline
import torch
pipe = DiffusionPipeline.from_pretrained(
"stabilityai/stable-diffusion-xl-base-1.0",
torch_dtype=torch.float32,
use_safetensors=True
)
pipe.to("cuda")
prompt = "super dog riding a red horse"
image = pipe(prompt=prompt).images[0]
image
/home/kubwa/anaconda3/envs/pytorch/lib/python3.11/site-packages/huggingface_hub/file_download.py:1132: FutureWarning: `resume_download` is deprecated and will be removed in version 1.0.0. Downloads always resume when possible. If you want to force a new download, use `force_download=True`.
warnings.warn(
Loading pipeline components...: 0%| | 0/7 [00:00<?, ?it/s]
0%| | 0/50 [00:00<?, ?it/s]
image.save("dataset/dog_horse_output.png")
Diffusion UNet
import torch
from diffusers import StableDiffusionXLPipeline, UNet2DConditionModel, EulerDiscreteScheduler
from huggingface_hub import hf_hub_download
from safetensors.torch import load_file
base = "stabilityai/stable-diffusion-xl-base-1.0"
repo = "ByteDance/SDXL-Lightning"
ckpt = "sdxl_lightning_4step_unet.safetensors" # Use the correct ckpt for your step setting!
# Load model and move to CPU with single precision
unet = UNet2DConditionModel.from_config(
base,
subfolder="unet").to("cuda")
unet.load_state_dict(
load_file(
hf_hub_download(
repo,
ckpt
),
device="cuda"
)
)
# Initialize pipeline with GPU and single precision
pipe = StableDiffusionXLPipeline.from_pretrained(
base,
unet=unet,
torch_dtype=torch.float32).to("cuda")
# Ensure sampler uses "trailing" timesteps
pipe.scheduler = EulerDiscreteScheduler.from_config(
pipe.scheduler.config,
timestep_spacing="trailing"
)
# Generate image with specified inference steps and CFG scale
result = pipe(
"A cat skating",
num_inference_steps=4,
guidance_scale=0
)
image = result.images[0]
image.save("dataset/output.png")
/home/kubwa/anaconda3/envs/pytorch/lib/python3.11/site-packages/diffusers/configuration_utils.py:244: FutureWarning: It is deprecated to pass a pretrained model name or path to `from_config`.If you were trying to load a model, please use <class 'diffusers.models.unets.unet_2d_condition.UNet2DConditionModel'>.load_config(...) followed by <class 'diffusers.models.unets.unet_2d_condition.UNet2DConditionModel'>.from_config(...) instead. Otherwise, please make sure to pass a configuration dictionary instead. This functionality will be removed in v1.0.0.
deprecate("config-passed-as-path", "1.0.0", deprecation_message, standard_warn=False)
sdxl_lightning_4step_unet.safetensors: 0%| | 0.00/5.14G [00:00<?, ?B/s]
Loading pipeline components...: 0%| | 0/7 [00:00<?, ?it/s]
0%| | 0/4 [00:00<?, ?it/s]
image
Last updated